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Quantification of magnetic resonance parameters plays an

increasingly important role in clinical applications, such as

the detection and classification of neurodegenerative dis-

eases. The major obstacle that remains for its widespread

use in clinical routine is the long scanning times. Therefore,

strategies that allow for significant decreases in scan time

are highly desired. Recently, the k-t principal component anal-

ysis method was introduced for dynamic cardiac imaging

to accelerate data acquisition. This is done by undersampling

k-t space and constraining the reconstruction of the aliased

data based on the k-t Broad-use Linear Acquisition Speed-up

Technique (BLAST) concept and predetermined temporal ba-

sis functions. The objective of this study was to investigate

whether the k-t principal component analysis concept can be

adapted to parameter quantification, specifically allowing for

significant acceleration of an inversion recovery fast imaging

with steady state precession (TrueFISP) acquisition. We found

that three basis functions and a single training data line in

central k-space were sufficient to achieve up to an 8-fold

acceleration of the quantification measurement. This allows

for an estimation of relaxation times T1 and T2 and spin den-

sity in one slice with sub-millimeter in-plane resolution, in

only 6 s. Our findings demonstrate that the k-t principal com-

ponent analysis method is a potential candidate to bring the

acquisition time for magnetic resonance parameter mapping

to a clinically acceptable level. Magn Reson Med 66:706–716,

2011. VC 2011 Wiley-Liss, Inc.
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INTRODUCTION

In recent years, quantitative parameter mapping in mag-

netic resonance imaging (MRI) has provoked interest as a

promising approach in many clinical diagnostic applica-

tions (1), due to the fact that changes in tissue-depend-

ent MR parameters can be indicative of changes in the

tissue itself (2). Commonly used T1 and T2 weighted

measurement techniques fail to provide statistically ac-

cessible information about absolute values of image

intensities. Diagnosis therefore currently relies strongly

on comparisons with surrounding tissue. MR parameter

mapping, however, allows for a direct quantification of

tissue dependent parameters. This has been shown to

improve the early detection of diseases such as Parkin-

son’s (3) and Alzheimer’s disease (4) and also multiple

sclerosis (5). Additional evidence of disease progression

can be obtained by means of quantitative follow-up stud-

ies with these patients. Therefore, parameter measure-

ments of the longitudinal relaxation time T1, the trans-

verse relaxation time T2 and spin density can provide

health care professionals with more information than

current clinical protocols. This could result in shorter

overall acquisition time for individual patients,

improved diagnostic information and lower per person

scanning costs.
The main reason why quantitative MR parameter

mapping has not yet been established for widespread
application in clinical diagnostics is the long scanning
times; estimation of the MR parameters requires the ac-
quisition of multiple images with various contrasts.
Given the general trend in MRI towards higher spatial
resolution in shorter acquisition times, fast quantifica-
tion of the tissue-dependent parameters has also become
the subject of extensive investigation (6). New acquisi-
tion techniques for parameter quantification have
shortened the duration of whole brain quantification
measurements down to 9 min for quantitative T1 maps
with 1 mm isotropic resolution (7). In addition, new
combined acquisition approaches shortened the scan-
ning time down to 17 min for T1 and T2 maps with
1mm isotropic resolution (8) or even 5 min for quantita-
tive mapping of T1, T2, and PD and in-plane resolution
of 0.8 and 5 mm slice thickness (9). The recently pro-
posed inversion recovery (IR) TrueFISP sequence (10,11)
allows for a simultaneous extraction of T1, T2 and rela-
tive spin density from a single experiment and therefore
produces automatically registered and perfectly aligned
parameter maps.

Long scanning times are also a problem in other MR
imaging fields, such as dynamic imaging, where the ac-
quisition of a series of images is required. Several studies
on accelerated dynamic imaging propose acquisition
schemes where the scanning time per image is shortened
by undersampling k-space over time. This results in
aliased signals, which can be resolved by various recon-
struction methods such as TSENSE (12), TGRAPPA (13),
k-t GRAPPA (14), k-t SENSE and k-t BLAST (15). The
latter two use spatio-temporal correlations to reconstruct
the missing data by an adaptive filtering process in x-f
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space. They rely on the fact that cardiac data are re-
stricted to a localized region in the x-f domain, i.e., there
is a low degree of aliasing even in highly accelerated
acquisitions. So far these techniques have not been pro-
ven applicable for MR parameter mapping, because the
representation of these data in x-f space is less sparse,
meaning there is a higher degrees of aliasing even at
moderate acceleration rates. Yet, recently k-t PCA has
been introduced as a generalization of the k-t BLAST
method for dynamic imaging that is more suitable to
resolve strong signal aliasing artifacts (16). The method
uses a new set of temporal basis functions (principle
components) obtained from training data, to reduce the
number of degrees of freedom in the reconstruction.
Thereby k-t PCA can better recover overlapping signals
in an aliased object, if the number of basis functions is
sufficiently low. This makes the k-t PCA method a
promising candidate for reconstructing accelerated
data sets that, like MR parameter mapping, have a
high degree of aliasing in the x-f domain, but simple
temporal dynamics.

The aim of this study was to investigate whether the
k-t PCA method used in dynamic imaging can be suc-
cessfully applied to significantly accelerate the acquisi-
tion of MR sequences for simultaneous acquisition of
tissue-dependent parameters. We hypothesize that the
temporal dynamics along an exponential relaxation
curve can be described by only a very small number of
basis functions. Hence the reconstruction of under-
sampled MR parameter data could be highly con-
strained. To demonstrate the potential benefits of this
approach we applied the k-t PCA method to an IR
TrueFISP acquisition sequence (10), thereby allowing for

simultaneous quantification of T1, T2 and relative spin
density in one slice with submillimeter in-plane resolu-
tion in only 6 s.

THEORY

Undersampled Acquisition

Dynamic imaging and MR parameter mapping require the
acquisition of a series of images over time. Since most
voxel intensities follow a specific temporal profile (e.g.,
cardiac motion), the k-t space data (k ¼ reciprocal loca-
tion, t ¼ time) of these images series are highly correlated.
To reduce redundancy and accelerate measurement time,
new methods acquire a reduced amount of data over
space and time (15,16) then using sophisticated re-
construction techniques to recover the entire image.
Undersampling in the k-t domain, however, leads to a
convolution of the true object signal with the point spread
function in the reciprocal x-f space (x ¼ location, f ¼ fre-
quency). If k-t space is sampled according to a lattice
structure, the point spread function in the x-f space is
also represented by a lattice structure. In this work, data
are undersampled by a given acceleration factor (af) so
that the acquired k-t sampling locations lie on a sheared
grid (Fig. 1). The acceleration factor is defined as the
number of phase encoding steps needed to reconstruct an
alias-free image divided by the number of actually
acquired phase-encoding lines per image. In the following
sections, the mathematical principles of two techniques
are presented that resolve the aliasing and reconstruct the
true data, k-t BLAST and k-t PCA. Figure 2 provides an
overview of the two methods, depicting both common
and differing processing steps.

FIG. 1. Schematic overview of the acquisition scheme employed in k-t PCA and k-t BLAST. A set of training data and undersampled data

in k-t space are acquired. For clarity, a representation of the data in the spatial domain is also given. The training data consist of only a
few lines in central k-space fully sampled over time, leading to a high temporal but low spatial resolution. The undersampled data are
shown for an 8� undersampled acquisition scheme according to a sheared grid, resulting in an aliased signal in the spatial domain.
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k-t BLAST

According to the undersampling scheme the true object
signals are mapped in such a way that they overlap in
the corresponding x-f representation of the aliased data.
The intensity of a single pixel in the aliased object at the
location (x, fm) is therefore composed of the interfering
pixel intensities of the true object. In the case of 4-fold
undersampling, for instance, the aliased signal can be
expressed as the sum of four pixel intensities of the fully
sampled object in the x-f domain

Paliasðx; fmÞ ¼ 1

Pxf ðx1; fm;1Þ
Pxf ðx2; fm;2Þ
Pxf ðx3; fm;3Þ
Pxf ðx4; fm;4Þ

2
664

3
775 ¼ 1Pxf ½1�

where the measured pixel intensity is given by Palias

(x, fm) and Pxf (xi, fm,i) denotes the i-th unknown pixel

intensity of the true object in x-f space. Equation 1
describes the aliased signal at location x for a single tem-
poral frequency and is called the signal encoding equa-
tion of k-t BLAST (15). Since the single signal intensities
of the true object are unknown, Eq. 1 is underdeter-
mined. The challenge of a reconstruction algorithm is
therefore to solve the signal encoding equation for an
adequate representation of the true object from the
aliased image pixels.To achieve this, the k-t BLAST tech-
nique implements a least squares method and incorpo-
rates an estimate of the signal covariance to optimize the
reconstruction formalism. The aliased signal is then
decomposed into the true object components according
to their expected intensities:

Pxf ¼ Cov21Hð1 � Cov21HÞ�1Palias;x ½2�

The superscript �1 indicates the inverse, H the conju-
gate transpose and 1 the unity matrix. The estimate of
the signal covariance matrix Cov2 is derived from an
additional training data set that consists of a small num-
ber of central phase-encoding lines fully sampled over
time, providing low spatial, but full temporal resolution
(Fig. 1). By solving Eq. 2 for all aliased voxels the true
object in the x-f domain can be reconstructed.

Note that the signal encoding equation in k-t BLAST
remains underdetermined. The decomposition of the
aliased signal into its true components depends solely
on the low-resolution estimate of the signal covariance.
This causes a rapidly increasing reconstruction error for
increasing acceleration factors, resulting in reduced tem-
poral fidelity accompanied by remaining aliasing arti-
facts. In general, the k-t BLAST method allows for mini-
mal overlap of the object signal in the x-f domain.
Nevertheless, if the signal overlap is stronger, as in the
case of MR parameter mapping, the method is not suffi-
cient to resolve all aliasing artifacts.

k-t PCA

The k-t PCA method is an extension of the k-t BLAST
method. The full mathematical description can be found
in the original publication by Pedersen et al. (16). In the
following section, a brief review of the method is given.
The idea behind k-t PCA is to employ more of the signal
correlations inherent in the training data. As stated
above the signals at different points in time are not inde-
pendent of each other. Therefore, a standard compres-
sion technique, namely principal component analysis
(PCA), can be used to find a matrix factorization of the
data in the x-f domain that exploits this redundancy in
such a way that the data are expressed in an uncorre-
lated and sparse manner in the so-called x-pc space (Fig.
2). In k-t PCA each temporal frequency profile of the
training data in the x-f space is restated by a linear com-
bination of a set of basis vectors (principle components).
The advantage of this method is that the new basis
expresses the main temporal features of the data with a
minimum number of independent basis vectors. There-
fore, it can be used to compress the data and reduce the
number of degrees of freedom accordingly, in the recon-
struction problem for undersampled data.

FIG. 2. Schematic overview of the k-t PCA procedure compared
to k-t BLAST. Both methods use the representation of the training
and undersampled data in the frequency domain for the data

reconstruction. The k-t BLAST method relies solely on an estimate
of the training covariance to resolve the aliasing in the under-
sampled data (dotted lines), while the k-t PCA concept performs a

matrix factorization of the training data into a set of basis func-
tions (principal components) to represent the data sparsely in a

new basis set. In the case of k-t PCA, the aliasing is resolved for
all temporal frequencies at once in the x-pc domain and finally,
mapped back to the original basis in the x-f domain by the inverse

PCA (solid lines).
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The main assumption of k-t PCA is that the temporal

basis derived from the low resolution training data does

not distinctly differ from the basis of the fully sampled

x-f data. This means that the x-f data of the true object

can be represented in the predetermined basis of the

training data. Mathematically this can be expressed as

follows:

Pxf ðx; fmÞ ¼
Xnpc

i¼1
Pxpcðx; iÞ � Bði; fmÞ ¼ pxpcðxÞ � bðfmÞ ½3�

where the rows of B contain the principal components

(PCs) derived by applying the PCA to the training data in

x-f space. The basis functions are the eigenvectors of the

covariance matrix of the training data ordered according

to their corresponding weighting coefficients (eigenval-

ues). The columns of the data in the new x-pc space, Pxpc,

contain the temporally invariant weighting coefficients.

The size of the weighting coefficients is a measure of the

contribution of the corresponding principle components

to the data variance. Most of the temporal dynamics

within the data are typically modeled within the first few

PCs. By restricting the sum in Eq. 3 and therefore the x-pc

representation of the data to the first npc PCs, the corre-

sponding x-f data can be represented in a much more

compressed fashion. Based on Eq. 3 the signal encoding

equation of k-t BLAST can be extended to

Paliasðx; fmÞ ¼ 1Bmpxpc ½4�

Here, Bm and pxpc depict the corresponding columns
and rows of B and Pxpc of the aliased pixel. Similar to
Eq. 1, the signal encoding equation for k-t PCA can be
expressed for each frequency in x-f space as

Palias;x ¼
Paliasðx; f1Þ
Paliasðx; f2Þ

..

.

Paliasðx; fnf
Þ

2
6664

3
7775 ¼

1B1

1B2

..

.

1Bnf

2
6664

3
7775pxpc � Epxpc ½5�

The data of the true object are now expressed in their ma-

trix factorization in relation to the PCs. The signal encoding

equation for k-t BLAST and k-t PCA become almost equiva-

lent, if the matrix containing the basis functions Eis
replaced by the unity matrix I, which corresponds to the

uncompressed original basis. The only difference is that

the signal encoding equation for k-t PCA takes into account

the aliasing for all temporal frequencies.

Analogous to Eq. 2, the solution to Eq. 5 is derived

from the regularized least squares solution, this time

based on the matrix expression of the new temporal ba-

sis vectors, E.

pxpc ¼ Cov2xE
HðE � Cov2xEHÞ�1Palias;x ½6�

By solving Eq. 6 for all positions x of aliased voxels

the true object in the x-pc domain is obtained. Finally,

the reconstruction result is mapped back to the original

basis in the x-f domain by the inverse PCA (Eq. 3). In a

last step a Fourier transformation is applied to obtain the

representation of the data in the time domain.

In contrast to the underdetermined k-t BLAST recon-
struction problem, the signal encoding problem of k-t
PCA can be overdetermined, if the number of measure-
ments exceeds the number of unknown variables in the
system. Image acquisition for k-t PCA consists of nx �
nf/ af measurements of phase encoding lines, where nx

is the number of phase encoding lines of a fully
sampled image and nf is the number of images over
time. The data that are reconstructed in x-pc space con-
sist of nx � npc phase encoding lines, where npc is the
number of applied PCs. Thus if the number of measure-
ments for k-t PCA exceeds the amount of data that
need to be reconstructed, that means if npc < nf/af, the
reconstruction problem becomes overdetermined. In
other words, the fewer PCs that are needed to
adequately describe the dynamics of the true object, the
more constrained and well-defined the reconstruction
problem becomes.

METHODS

Data Acquisition

To investigate the performance of k-t PCA for fast MR
parameter mapping, a standard segmented IR TrueFISP
acquisition (10) was chosen for the quantification mea-
surement allowing for a simultaneous extraction of the
parameter maps for T1, T2 and relative spin density. The
acquisitions consisted of non-slice selective adiabatic
inversion pulses, 8 segments, 64 images along the relaxa-
tion curve, TR ¼ 4.04 ms, flip angle¼ 50� and a matrix
size of 192 � 192, Field-of-View (FOV) of 190 � 190
mm2 and a slice thickness of 6 mm. Eight k-space seg-
ments were acquired to provide a fully encoded refer-
ence. The acquisition time per segment was 6 s. Between
the acquisitions of each individual k-space segment a
10 s time delay was inserted to allow for full relaxation
of the magnetization to thermal equilibrium. Thus the
overall scan time for the fully sampled data was 2 min
per slice. In the case of 8-fold undersampling, the delay
could be removed and the scan time could be reduced to
6 s. A standard 12 channel head array was used as the
signal receiver for the IR TrueFISP sequence.

In addition, an ECG-gated cardiac TrueFISP CINE data
set with 21 phases per cardiac cycle was acquired as an
example data set for dynamic imaging. A six channel
body array in combination with six channels of a stand-
ard spine array was employed here.

All experiments were conducted on healthy volun-
teers, who gave written informed consent to participate
in this study. All data sets were obtained in vivo on
a MAGNETOM Avanto 1.5 T (Siemens Healthcare,
Erlangen, Germany).

Application of k-t PCA

Data series were fully sampled over time. Undersampling
was then performed retrospectively for varying accelera-
tion factors (af ¼ 2, 4, 8, 16) by selecting a smaller num-
ber of phase encoding lines in the k-space representation
according to the sampling pattern in Fig. 1. The k-t PCA
method was applied to the undersampled data and the
outcome was later compared to the fully acquired data,
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to directly measure k-t PCA performance. The suitable
number of training data lines was tested by the recon-
struction error for the different training profiles (1, 2, 4,
8, 16, 32, and 64 training data lines) with three basis
functions and af ¼ 8. Furthermore, the number of PCs
was varied from 1 to 6, while the number of training
data lines and the acceleration factor were kept constant
(one single line in central k-space, af ¼ 8). To compare
the influence of different acceleration factors (af ¼ 1, 2,
4, 8, 16), three PCs and one single training data line
were used. Image quality was evaluated by the relative
root mean square (RMS) error that was calculated for
each test parameter as the RMS difference between the
fully sampled data and the reconstructed images normal-
ized by the RMS intensity of the fully sampled data.

Data Model

Finally, the k-t PCA reconstructed series of images of the
IR TrueFISP measurement was fitted on a pixel-by-pixel
basis to a three parameter mono-exponential model func-
tion proposed by Gulani and coworkers (10) to obtain
the model parameters T1*, INV and Sstst:

MðtÞ ¼ Sstst � 1� INV � exp � t

T�
1

� �� �
½7�

The observed relaxation time value T1* is a function
of the true tissue parameters T1 and T2 and the flip
angle. The inversion factor INV relates the signal value
extrapolated to t ¼ 0 and the steady state signal Sstst. It
allows for the calculation of the ratio T1/T2. Thus, the
parameter maps for T1, T2 and the relative spin density
M0 can be calculated pixelwise from the fitted parame-
ters according to the following equations:

T1 ¼ T�
1 � cos

a

2
� INV� 1ð Þ

h i
½8�

T2 ¼ T�
1 � sin2 a

2
� 1� cos a

2

INV� 1

� ��1
" #

½9�

M0 ¼ Sstst � INV� 1ð Þ
sin a

2

½10�

It is assumed in Eqs. 8–10 that the magnetization
reaches its thermal equilibrium before the next inversion
starts. Due to the finite wait time of 10s between the seg-
ments, this was not the case in our study resulting in a
systematic underestimation of M0. We corrected for this
effect as described in the Appendix of Gulani et al. (11)

M0 ¼
Meff�Sstst 1� INV � exp � tscan

T�
1

� �h i
� cot a

2

� � � exp � twait

T1

� �
1� exp �twait

T1

� �
½11�

where tscan is the time at the end of the sampled relaxa-
tion curve and twait is the wait time after sampling when
the longitudinal component of the relative spin density
relaxes along the z-axis to its effective value after wait
time, Meff. We further used the corrected M0 value to
adjust T1 and T2. All corrections had only an effect on

extremely long T1 and T2 times, as they can be found in
CSF. Finally, the receiver coil sensitivity profiles where
measured and used to normalize the intensity of the M0

maps. Thus, the derived maps directly reflect the relative
spin density. Further correction factors accounting e.g.,
for B1, B0 and temperature would additionally need to be
applied to yield quantitative spin density maps (6).

RESULTS

Modification of k-t PCA

Basis Vectors for Dynamic and Relaxation Data

An overview of the representation of the acquired

dynamic and relaxation data in various image domains

is provided in Fig. 3. The fully sampled MR parameter

data show a broad extension in the x-f domain, leading

to a strong signal overlap in the case of undersampling.

In contrast, the dynamic data are sparsely represented in

x-f space, with little signal overlap for undersampled

image acquisition. On the other hand, if the data are

transformed into their x-pc representation via PCA, the

appearance is reversed. The dynamic data are more

expanded than the relaxation data. The location beyond

which the normalized weighting coefficients are close to

zero (smaller than 1 ppm of the biggest weighting coeffi-

cient) is indicated by a white dashed line (Fig. 3, right

panel). The additional subplot shows the intensity of the

weighting coefficients of the PCs for a particular loca-

tion. As seen in Fig. 3, the main variance of the MR pa-

rameter quantification data is accurately encoded with

three PCs, whereas �11 PCs contribute significantly to

the temporal variance in the dynamic cardiac data.

Figure 4 shows the influence of the number of basis

functions (from 1 to 6 PCs) on the overall image quality

of the reconstructed MR parameter quantification data.

The relative RMS error remains low for two and three

PCs. Adding an extra PC merely adds noise to the recon-

struction because of the low corresponding weighting

coefficient. This causes an increase in the relative RMS

error of 32% from three to four PCs (Fig. 4a).

Number of Training Data Lines

Figure 4b depicts the influence of the number of train-

ing data lines in central k-space on the reconstruction

performance. We measured a slight increase in the rela-

tive RMS error for a larger number of training data lines

(10% error increase for 64 compared to one training

data line). Additionally the quality of the image series

did not significantly depend on the number of training

data lines used for reconstruction. Hence for further

investigations only a single line in central k-space was

used as training data.

Acceleration Factor

As expected, the overall relative RMS error of the MR
parameter reconstruction increased for larger acceleration
factors. Figure 4c shows the increase of 0.2% from 2- to 4-
fold acceleration and a further increase of 7.2% for 8-fold
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acceleration. The reconstruction performance becomes
insufficient for acceleration factors beyond af ¼ 8, mainly
due to a strong amplification of the noise level in the first
few images of the time series at higher accelerations. The
first image of the time series already exhibits a decrease in
the signal-to-noise-ratio (SNR) of 5.6 % from 2- to 4-fold
acceleration and a decrease of 13.9% from 4- to 8-fold
acceleration. Later images in the time series showed only
moderate SNR differences for varying acceleration factors
(�2%). Figure 5 depicts an overview of the image quality
of the first 4 images and the time course of each image se-
ries for 1, 2, 4 and 8-fold acceleration. The increased noise
level becomes evident in the zoom-in of the fully sampled
data and 8 fold acceleration.

General Method Performance

Figure 6 depicts the parameter maps of the MR parame-
ters for different acceleration factors (af ¼ 2, 4, 8) in
comparison to the fully sampled data (af ¼1). No remain-
ing aliasing artifacts can be observed for the accelerated
data. Regions of interest (ROIs) were placed at various
locations, e.g., in frontal and occipital white matter, gray
matter, thalamus, CSF, putamen and caudate nucleus, in
the fully sampled and accelerated data. The mean voxel
intensities of the ROIs were compared for T1 and T2 pa-
rameter maps of the reconstructed data and the fully
sampled data (Fig. 7). Little variation compared to the
fully encoded gold-standard can be observed for different

FIG. 3. In vivo measurements: Comparison of the different image spaces involved in k-t PCA for MR parameter mapping (top) and
dynamic CINE data (down). From left to right: fully sampled data, 4-fold undersampled data, time course of the fully sampled data, rep-

resentation of fully sampled and 4-fold undersampled data in the frequency domain, transformed data after PCA in the x-pc domain
and enlargement of the x-pc representation. Additionally a particular line at location x in x-pc representation is plotted for each data set.
The ordinate corresponds to the signal intensity of the weighting coefficients. The abscissa represents the number of PCs. The part in

the x-pc space location, beyond which the normalized weighting coefficients are close to zero (smaller than 1 ppm of the biggest
weighting coefficient) is indicated by a white dashed line (right panel).

FIG. 4. Relative RMS error of the reconstructed data compared to the fully sampled data of the quantification measurement for different
changes in the configuration of the k-t PCA parameters. a: Relative RMS error for varying numbers of PCs (af ¼ 8, 1 training data line).

b: Relative RMS error for varying numbers of training data lines (af ¼ 8, 3 PCs). c: Relative RMS error for varying acceleration factors
(three PCs, one training data line).
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T1 and T2 values; all parameter values obtained from the
reconstructed data match the fully sampled data within
the bounds of the error.

In addition, the mean intensities for the fully sampled
and 8-fold accelerated data were compared to standard
values reported in the literature for the particular region
(6,8,10). All values are listed in Table 1. In general, the
parameters of the accelerated measurement and the fully
acquired data match the reference values within the
bounds of the error. The only exception is the T2 value
for CSF that does not match the reference value reported
in the literature for an IR TrueFISP measurement (10).
The standard deviation for the reconstructed data is con-
sistently larger for the 8-fold accelerated data compared
to the fully sampled data.

DISCUSSION

Modification of k-t PCA

Basis for Dynamic and Relaxation Data

The k-t PCA method is based on a transformation of
the data into a new set of basis functions that are tai-
lored to their temporal dynamics. We found a mini-
mum of 11 basis functions that significantly contribute
to the signal time course of the cardiac CINE experi-

ment. This result is in accordance with the findings of
a previous study by Pedersen et al. where an optimal
number of around 10 basis functions was reported
(16). In addition, this study demonstrates that only
three basis functions were required to encode the dy-
namics of an MR parameter mapping IR TrueFISP experi-
ment. We ascribe this finding to the simple temporal
dynamics of MR parameter mapping. Fundamentally an
exponential time course underlies all signal intensities
over time in MR parameter mapping; the exact shape of
the curve is spatially dependent and thus determined by
the weighting coefficients, but the general dynamic
remains very similar and can be described by 2–3 basis
functions.

Furthermore, the number of basis functions deter-
mines the maximal compression rate of the data and
thus, the number of degrees of freedom in the recon-
struction method. A high number of PCs causes an
underdetermined reconstruction problem for k-t PCA, in
which the signal estimate will more strongly rely on
the estimated signal covariance and thus, become more
similar to k-t BLAST. In the case of MR parameter map-
ping, this will cause strong residual aliasing artifacts.
Additional PCs, which do not encode the true temporal
dynamics, mainly encode variance in the data that is
due to noise. This can be observed in Fig. 5b were the

FIG. 5. Image series over time for fully sampled and accelerated data. a: First four images for the time series of the fully sampled (1�)

and reconstructed data (2, 4, 8� acceleration, 3 PCs, 1 training data line). A zoom-out of the first image for 8-fold acceleration and fully
sampled data is displayed. b: The time series for each acceleration factor (gray) is plotted for a single pixel indicated in (a) by a white
circle compared to the original time series (black).
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time curves of the reconstructed data with few PCs
appear to be smoothed compared to the original data.
Adding these low variance components will lead to an
increased noise level in the reconstruction and an
increase in the relative RMS error (Fig. 4). On the other
hand, if the number of PCs is too small, the time
course of the data is not sufficiently described by the
PCs leading to a systematically wrong shape of the
relaxation curves also causing an increase in the rela-
tive RMS error. Thus, an optimal number of basis func-
tions always exists, which is strongly dependent on the
temporal dynamics of the measurement. For relaxation
data, this value will most likely vary between 2 and 4
basis functions.

Number of Training Data Lines

The number of training data lines plays a crucial role in
the maximal achievable acceleration factor for k-t PCA.
The optimal number of training data lines reported for
cardiac imaging with k-t BLAST/k-t PCA is in the range
of 10 to 20 (16–19). Pedersen et al. used a convention of
11 training data lines for k-t PCA in cardiac imaging
(16). In contrast to previous findings for dynamic data,
we showed that for the reconstruction of quantitative

data a single training data line in central k-space is suffi-
cient to reconstruct the MR parameters from an IR True-
FISP measurement. Furthermore, a larger number of
training data lines did not improve the reconstruction
quality. This result can be attributed to the fact that a
single line in central k-space encodes the main temporal
dynamics independent of the spatial resolution, since all
voxels exhibit an exponential decay with varying shape.
In contrast, in dynamic imaging various strongly differ-
ing time courses are possible. Thus, depending on the
voxel location, additional temporal components need to
be encoded. This finding allows for a combined sam-
pling pattern for training and undersampled data and an
additional reduction in acquisition time for MR parame-
ter mapping. Furthermore, it proves that the amount of
required training data is strongly dependent on the com-
plexity of the dynamics.

Acceleration Factor

The maximal achievable acceleration factor for the IR
TrueFISP was found to be eight. Consistent with the
findings of Pedersen et al. (16) the accuracy for k-t PCA
for larger acceleration factors e.g., af ¼ 16 falls below a
clinically acceptable level. However, this is certainly

FIG. 6. MR parameter maps for T1, T2 and relative spin density for the fully sampled data (left) and the undersampled data and with k-t
PCA reconstructed data (from left to right: 1, 2, 4, and 8-fold acceleration, three PCs, one training data line).
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dependent on the SNR of the measurement, the number
of acquired images per time series and the possible com-
pression rate given by the number of PCs.

General Method Performance

We demonstrated that a simultaneous measurement of
T1, T2 and relative spin density with an IR TrueFISP
sequence can be significantly accelerated using k-t PCA.
Furthermore, the acquisition time of the measurement
can be shortened due to the small amount of required
training data. Thereby the parameter values up to an
acceleration factor of eight agreed well with the litera-
ture values.

Limitations

One major limitation of the method is noise level in the
reconstructed data. A significant SNR decrease can be
observed solely for the first few images of the time series
for larger acceleration factors. One reason is expected to
be the matrix inversion implemented in the k-t PCA
reconstruction.

In contrast to the g-factor related spatially dependent
noise enhancement typically observed in parallel MRI in
SENSE (20) and GRAPPA (21) reconstructions, the noise
enhancement observed here features a strong temporal
variation, especially for high acceleration factors and
higher numbers of PCs. In this study, this led to maxi-
mum acceleration factor of eight. Given that IR TrueFISP

measurements have a relatively high SNR, this effect
might become a severe problem for a further application
of k-t PCA on sequences with low SNR.

Furthermore, there are sources of error in the estimation

of the MR parameters. First we assume the relaxation pro-

cess to be mono-exponential. Yet this is an approximation.

Due to multiple compartments of different tissues within a

single voxel, the relaxation behavior is multi-exponential.

More accurate results on the parameter values could be

achieved by fitting a multi-exponential decay with no

assumptions about the number of exponential components

(22). Moreover, most k-space lines are acquired when

relaxation was nearly complete, only a few lines are

acquired on the steep relaxation slope right after the inver-

sion pulse. This results in a slight blurring of the first few

images for short T1 values compared to the later images of

the series. However, we were able to weaken this effect by

an 8-fold segmentation of the sequence allowing for an

inter-image time delay of only 100 ms at a TR of 4ms.
In addition, the parameter quantification with IR True-

FISP is subject to some systematic errors originating
mainly from the discrepancy between the experimentally
and theoretically derived signals for steady state free pre-
cession (SSFP) sequences. One cause of inaccuracy in the
parameter estimation is that the finite radio frequency
(RF) pulses lead to an increase of the steady state signal
intensity due to T1 relaxation during the pulses. Thus, a
correction of SSFP sequences was suggested for quantita-
tive measurements (23,24). In addition, latest studies

Table 1
Average 6 Standard Deviation of T1 and T2 Relaxation Times in Particular ROIs in the Brain for Fully Sampled and 8-Fold Accelerated
Data (First and Second Column) Compared with Reference Values in the Literature (Third Column)

T1/ms T2/ms

1� 8� Lit. 1� 8� Lit.

White matter 748 6 34 770 6 93 719 6 33 (10) 70 6 7 80 6 12 73 6 6 (10)
78 6 3 (6)

Gray matter 955 6 41 943 6 75 1165 6 88 (10) 104 6 10 99 6 10 92 6 11 (10)
1065 6 98 (8) 98 6 7 (8)

1048 6 61 (6) 94 6 6 (6)
CSF 3715 6 459 3853 6 512 3337 6111 (10) 1120 6 391 1052 6 818 2562 6 123 (10)

3940 6 340 (6) 1910 6 520 (6)

FIG. 7. Correlation between relaxation times obtained from the fully sampled (abscissa) and the undersampled and reconstructed in
vivo data (ordinate) for the 2-fold (blue), 4-fold (red), and 8-fold (orange) acceleration (three PCs, one training data line) in different ROIs
in the brain, including white matter, gray matter and putamen. The dotted slope indicates where both relaxation values are identical.

a: demonstrates the comparison for various T1, (b) for T2 values.
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found a systematic overestimation of T1 that is thought to
be due to the influence of magnetization transfer on a
SSFP signal (23,25). Furthermore, additional deviations
of the estimated MR parameter from the true tissue param-
eters can be caused by the strong dependency of MR
parameters on the flip angle used in an IR TrueFISP mea-
surement, especially for T2. Thus, deviations of the
observed relaxation values in T2 compared to the refer-
ence can be caused by a suboptimal excitation slice pro-
file in our sequence and may result in errors in T2 up to
40%. This effect can either be minimized by improving
the slice profile of the pulse (i.e., higher time-bandwidth
product, leading to higher RF deposition) or completely
removed by using 3D sequences with an optimal slab pro-
file; however, deviations arising from potential B1 inhom-
geneties remain. While B1 field homogeneities can be
reduced to a minimum at 1.5T by employing the system
body-coil for transmission and a receive-only phased
array head coil for signal reception, as used in our setup,
strong effects can be expected at higher fields and when
local transmit coils are used (26).

These limitations mainly affect the accuracy of the
estimated parameters. Nevertheless a further improve-
ment of the IR TrueFISP sequence is expected to have no
effect on our general finding that the k-t PCA method is
capable of significantly accelerating parameter quantifi-
cation measurements.

Applications

The true value of our findings is that k-t PCA is applica-
ble to a variety of acquisition techniques where a series
of images is acquired. It has already shown to improve
the accuracy of accelerated dynamic imaging (16) and
we further investigated the application on simultaneous
MR parameter quantification using IR TrueFISP in this
study. Another potential application could be contrast-
enhanced perfusion imaging or MR Angiography. The
performance of k-t PCA is strongly dependent on the
number of degrees of freedoms in the reconstruction.
Thus, time series with even simpler temporal dynamics
will further benefit from the method as shown for a
modified IR TrueFISP sequence (27,28).

It is expected that an extension to 3D imaging enables
quantification of the whole brain with an IR TrueFISP
measurement and 1.4 mm isotropic resolution in about 6
min (25). Further acquisition time reduction could also
be achieved by using predetermined basis functions from
simulated artificial relaxation data and therefore without
the need of the acquisition of extra training data. A com-
bination with other fast quantification imaging techni-
ques such as QRAPMASTER (6) is also feasible. Thereby
the advantage of k-t PCA compared to other reconstruc-
tion concepts presented for fast MR parameter mapping
is the low computational cost to calculate the recon-
structed data (29) and the small amount of training data
required.

CONCLUSION

The k-t PCA concept was successfully applied to signifi-
cantly accelerate the acquisition of the IR TrueFISP

sequence for simultaneous quantification of T1, T2 and
relative spin density. Owing to the simple temporal
dynamics of the time course, the relaxation data can be
expressed by a very small number of basis functions.
This allows for an extremely constrained reconstruction
and up to 8-fold accelerated acquisition. Furthermore,
the amount of training data can be restricted to a single
line in central k-space. These findings in combination
with the flexibility of the method make k-t PCA a poten-
tial technique to bring the acquisition time for MR
parameter mapping to a clinically acceptable level.
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