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ABSTRACT
This article outlines how a core concept from theories of homeostasis and cybernetics, the inference-control loop,
may be used to guide differential diagnosis in computational psychiatry and computational psychosomatics. In
particular, we discuss 1) how conceptualizing perception and action as inference-control loops yields a joint
computational perspective on brain-world and brain-body interactions and 2) how the concrete formulation of this
loop as a hierarchical Bayesian model points to key computational quantities that inform a taxonomy of potential
disease mechanisms. We consider the utility of this perspective for differential diagnosis in concrete clinical
applications.
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Psychiatry faces major challenges: its nosology is agnostic
about mechanisms, lacks predictive validity, and leads to trial-
and-error treatment (1,2). Strikingly, neuroscientific advances
have hardly affected nosology or clinical practice (3). One
response to this disconnect is computational psychiatry, with
its emerging focus on clinical applications (4–11). One strategy
for computational psychiatry is to learn from internal medicine,
where mechanistic frameworks for differential diagnosis enable
targeted treatment decisions for individual patients. Impor-
tantly, differential diagnosis does not necessarily require mo-
lecular mechanisms. Much coarser distinctions—inflammatory,
infectious, vascular, neoplastic, autoimmunological, or heredi-
tary causes of disease—can provide crucial guidance for
treatment, as they disclose fundamentally distinct disease
processes.

This article outlines a framework for differential diagnosis
that is motivated by a general computational perspective on
brain function. While not the first attempt of its kind (4,12–14),
this article makes three contributions. First, we adopt a
disease-independent motif—the inference-control loop as
fundament of cybernetic theories (15–18)—and consider how
this may help in systematizing computational perspectives on
brain-world and brain-body interactions. Second, we consider
a hierarchical Bayesian implementation that suggests three
possible computational quantities (predictions, prediction
errors [PEs], and their precisions) at five potential failure loci
(sensation, perception, metacognition, forecasting, action).
Third, we discuss the potential clinical utility of this taxonomy
for differential diagnosis in computational psychiatry and
psychosomatics [compare (14,19–21)].
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INFERENCE-CONTROL LOOPS

Different theories of adaptive behavior exist, but they share
common themes. We focus on the closed loop between sen-
sations and actions that is at the core of classical cybernetic
theories (15,16) and homeostatic principles (22,23). We first
summarize extended cybernetic/homeostatic theories
(Figure 1) before considering one particular implementation as
a foundation for a joint taxonomy of disease mechanisms in
psychiatry and psychosomatics.

A useful starting point to reflect on adaptive behavior is
the observation that it must be constrained by requirements
of bodily homeostasis. In the simplest case, actions can be
purely reactive. For instance, to maintain constant body tem-
perature, sensor information can be compared with a pre-
defined set-point (e.g., 37�C). Actions, such as heating or
cooling the body, are then selected to bring sensory inputs
closer to that set-point. This reflex arc—which implements the
same feedback control as a simple thermostat—is illustrated in
Figure 1A.

If biological systems were like thermostats, with unambig-
uous sensory inputs and purely reactive in nature, simple
feedback control would be sufficient. However, biological
systems face three major challenges.

First, sensations (inputs from sensory channels) (see
Glossary in the Supplement) are noisy and often highly
ambiguous because the world’s states (body or environment)
that excite sensors can interact nonlinearly and/or hierar-
chically (24,25). It has long been recognized that the world’s
true state is not directly accessible for the brain and needs to
be inferred (26,27). This notion of perception as inference
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. (A) Simple example of a homeostatic reflex arc as described by classical cybernetics. Sensory inputs (sensations) about an environmental quantity
“X” (e.g., current body temperature) are compared with a predefined set-point (e.g., ideal body temperature). Corrective actions occur as a function of the
mismatch between input and set-point, such that “X” is moving closer to the set-point (e.g., heating or cooling the body). (B) Extension to an inference-control
loop, where perception (inference of environmental states) under an individual’s generative model of the world updates beliefs that change the reflex arc’s set-
point (e.g., allostatic control of bodily states); in other cases, actions might be chosen based on the perception rather than the sensation (not shown here). (C)
Further extension of the inference-control loop to include forecasting and metacognition. We wish to emphasize that this plot is highly schematic and provides
a core summary of different types of inference-control loops; it should not be misunderstood as a detailed circuit proposal.
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renders perception an interpretation of sensations, guided by
prior beliefs and a model of the world (28,29). Among many
findings supporting this notion, illusions prominently illustrate
how learned physical regularities can shape perception pro-
foundly (Figure 2A) (30,31). When sensations are ambiguous,
perception can expand the capacity for control, particularly
when action selection requires information about hierar-
chically deep states of the world that relate nonlinearly to
sensations. For example, in social interactions, inferring the
nature of others’ acts that generated visual input may not
be sufficient; instead, inference on deeper states, such as
the intentions of others that generated their acts, may be
required (32,33).

Second, inference on current states of the world can only
finesse reactive control. By contrast, prospective control
requires predicting the world’s future states (forecasting),
taking into account both the influence of possible
actions (34,35) and the world’s endogenous dynamics
(Figure 1C) (36).

Third, action selection and execution are influenced by
beliefs about one’s abilities (37). This self-monitoring of one’s
level of mastery in acting on the world is part of metacognition
and can be seen as a high-level form of inference about one’s
capacity for control (Figure 1C) (19,38).

Finally, given an inferred (or forecast) state of the world,
actions can be selected to achieve a particular goal (optimize
2 Biological Psychiatry - -, 2017; -:-–- www.sobp.org/journal
some objective function). This objective function can be
defined differently—in terms of utility (39), reward (34), cost
(40), loss (41), or surprise (42). Figure 1C depicts a schematic
illustration of the extended inference-control loop. Impor-
tantly, any given action alters the world, thus shaping future
sensory input. In other words, sensation, perception, fore-
casting, and actions form a closed loop between the brain
and its external world. For brevity, we refer to this entire
cycle as inference-control loop. Its closed-loop nature is
fundamentally important, as it creates problems of circular
causality that are at the core of diagnostic challenges we
examine below.
COMPUTATIONAL MODELING OF INFERENCE-
CONTROL LOOPS

We now consider how inference-control loops can be formal-
ized as concrete computational models. We adopt hierarchical
Bayesian models (HBMs) here but emphasize that this is not
the only possible perspective; for forecasting and control in
particular, alternative (and arguably more established)
modeling approaches exist [e.g., (34,43–45)]. We prefer a
hierarchical Bayesian view for two main reasons. First, it uses
the same formalism and quantities—precision-weighted pre-
dictions and precision-weighted PEs (pwPEs)—for imple-
menting perception, forecasting, reactive/prospective control,
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Figure 2. Two examples of perceptual inference.
From left to right: prior belief, sensory data, resulting
perception (posterior). (A) A classical example of a
visual illusion. We perceive the surrounding objects
in the image as concave and the center object as
convex, even though the sensory data stem from a
two-dimensional gray-scale image. The reason is
that humans (likely resulting from experience) hold
an implicit belief that light comes from above. If light
comes from above, the shadow of a concave object
should be located at the top, while the shadow of a
convex object should be located at the bottom. The
resulting percept is thus a reinterpretation of current
sensory input based on an implicit a priori belief
about lights and shadows. (B) Example of the pla-
cebo effect. Treatment with drugs that contain no
therapeutic ingredient can alter the perception of a
physical condition (e.g., reduce physical pain) and
elicit autonomic reactions (e.g., an immune
response). Again, the change in perception depends
on a prior (implicit) belief—here, that the treatment
will be effective. Notably, the placebo effect scales
with the predicted efficacy of the intervention (for
example, syringes are typically considered more
potent than pills).
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and metacognition. This suggests a compact taxonomy of
computational dysfunctions and their differential diagnosis
[compare (2,14)]. Second, the formulation of control in HBMs is
intimately connected to concepts of homeostatic (reactive) and
allostatic (prospective) control, which are of central importance
for psychosomatics.

Bayesian Inference

A widely adopted concept of perception is the Bayesian
framework (27,28,46,47). This casts perception as inference,
where prior beliefs about hidden states of the world are updated
in the light of sensory data to yield a posterior belief (Figure 3A)
(24,27). A popular notion is that this computation rests on a
(hierarchical) “generative model” of how sensory data are
caused by hidden states of the world (Figure 3A) (28,29,48,49).
Inverting this model under beliefs about the states’ a priori
probability allows for inferring the causes of sensations.

Bayesian models explain phenomena across the spectrum
of perception; for example, how humans combine multisensory
information (50,51) and how biases and illusions result from
prior beliefs and experience (24,30,52,53). A key point for this
article is that Bayesian belief updates have, for most proba-
bility distributions, a generic form: the change in belief is pro-
portional to PE—the difference between actual (sensory) data
and predicted data (under the prior)—weighted by a precision
ratio (54). The latter is critical, as it determines the relative
influence of prior and sensory data: precise predictions (priors
reduce, while precise sensory inputs increase, belief updates)
(Figure 3A). Generally, abnormal computations and/or
signaling of any of these three quantities—PEs, predictions,
and precisions—could disrupt inference.
B

Hierarchical Bayesian Models

The hierarchical structure of the external world suggests an
equivalent (mirrored) structure of the brain’s generative model
(28,48). Anatomically, this “hierarchical Bayesian” idea is
supported by structural hierarchies in cortex (55–57). Popular
HBMs include hierarchical filtering (54,58) and predictive
coding (28,49). In these models, each level holds a belief
(prediction) about the state of the level below (in predictive
coding) or its rate of change (in hierarchical filtering). This
prediction is signaled to the lower level, where it is compared
against the actual state, resulting in a PE. This PE is sent back
up the hierarchy to update the prediction—and thus reduce
future PEs. Critically, again, this update is weighted by a pre-
cision ratio (Figure 3A): higher precision of bottom-up signals
(sensory inputs or PEs) or lower precision of predictions leads
to more pronounced belief updates. Neurobiologically, in cor-
tex, predictions are likely signaled via N-methyl-D-aspartate
receptors at descending connections, and PEs are likely
signaled via alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptors (and possibly N-methyl-D-aspartate
receptors) at ascending connections, while precision weighting
depends on postsynaptic gain; this is determined by neuro-
modulators [e.g., dopamine, acetylcholine (59)] and gamma-
aminobutyric acidergic inhibition [for reviews, see (60–64)].

In an HBM context, the brain’s objective function can be
seen as minimizing PEs (as a proxy to surprise) under its
generative model (65). Notably, PEs can be reduced not only
by updating the generative model (as above) but also
by changing the precision of sensory channels (attention)
or by actions that fulfill predictions. The latter is “active infer-
ence” (35,42,66), a concept in line with the cybernetic notion
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 3
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Figure 3. Schematic of inference-control in a Bayesian framework. (A) (Top panel) Illustration of Bayes’ rule using Gaussian distributions as an example.
Bayes’ rule describes how different information sources—prior beliefs (predictions based on a model of the environment and the body within) and new sensory
data (likelihood)—are combined to update the belief (posterior). The amount of belief update is proportional to the prediction error (PE)—the difference between
predicted (prior) and actual (sensory) data—weighted by a precision ratio (p, inverse variance) of prior beliefs and sensory inputs (likelihood), respectively.
Simply speaking, precise prior beliefs diminish and precise sensory data increase the impact of PEs on belief updates. (Bottom panel) Illustration of the concept
of a generative model. A generative model infers hidden states of the world (environment or body) by inverting a probabilistic forward model from those states
to possible sensory data (likelihood), under prior beliefs about the values of the hidden states. Inverting a generative model thus corresponds to the application
of Bayes’ rule. Notably, the mapping from states to data can be mechanistically interpretable (e.g., biophysical models of neuronal responses) or descriptive,
such as noisy fluctuations around a constant value or a periodic function (compare circadian rhythms of bodily states). (B) Example of an inference-control loop
that is cast as a hierarchical Bayesian model. This figure is not meant to provide a detailed description, nor does it claim to represent the only possible layout.
Briefly, the key premise here is that the brain represents and updates generative models (“model of the body/world”), with hierarchically structured beliefs.
A low-level belief about a bodily/environmental state “x” (“prior”) is displayed separately from the rest of the model. The expected sensory inputs (under this
prior) can be compared against actual sensations to yield a PE; this PE can be sent up the inference hierarchy and update the model. Switching from
perception to action requires (temporarily) abolishing sensory precision [see (19,42) for details]. Actions can then be implemented in two main ways.
Homeostatic (reactive) control unfolds as a direct function of PE and serves to fulfill beliefs about sensory input [as encoded by the prior; this can be seen as a
probabilistic set-point (19)]. Allostatic (predictive) control prospectively shifts this probabilistic set-point to elicit actions; this requires predicting future states as
a function of actions and bodily/environmental dynamics (“forecasting”). Finally, metacognition could be implemented as an additional layer in the model that
holds (and updates) expectations with regard to the amount of PE at the top of the inference hierarchy (19).
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that “. control systems control what they sense, not what
they do” (17).
Forecasting, Action, and Metacognition in HBMs

While HBMs are popular models of perceptual inference, they
can also implement forecasting, action, and metacognition;
again, this rests on pwPEs. Switching from inference to fore-
casting and actions requires “switching off” sensory precision
(sensory attenuation) (66–68); this abolishes belief updates,
while PEs are now used as simulation or action signals
(19,36,42).

While different formalisms of forecasting exist (34,43,44,69),
their common theme is a “forward simulation” under a given
model. Bayesian implementations of forecasting include
“planning by inference” (36,70) and inference on trajectories of
states (generalized coordinates) (42,71). One challenge for
psychiatric and psychosomatic applications is that the model
often needs to predict not only the effects of chosen actions
4 Biological Psychiatry - -, 2017; -:-–- www.sobp.org/journal
but also the intrinsic dynamics of environment and body
(36,45).

Turning to action, HBMs can implement both reactive and
prospective control. The former occurs through a reflex arc at
the bottom of the hierarchy (Figure 3B). Specifically, by
replacing classical cybernetic set-points with beliefs about
hidden states that cause sensory inputs, reactive control can
be cast as a reflex where PEs elicit corrective actions that
minimize surprise about sensory inputs (19,42). Importantly,
the precision of the belief determines the vigor of these actions
(19)—a property that allows for new explanations of psycho-
somatic phenomena and placebo effects (see below). Pro-
spective control can be implemented by dynamically adjusting
this belief (e.g., its mean or precision) as a function of predicted
future states (19,72). These predictions could be signaled from
higher levels in the HBM that implement forecasting.

Action selection in HBMs could, in principle, proceed with
respect to optimizing any chosen objective function, e.g., a
subject-specific utility function (73). We focus on active
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inference (35,42,66) as a specific proposal. Simply speaking,
this postulates that actions serve to minimize PEs by changing
the world (environment or body) to fulfill the brain’s expectation
of sensory inputs. We focus on this idea because it is closely
related to cybernetics [e.g., perceptual control theory (17)] and
represents a probabilistic formulation of the core principle of
homeostasis—that regulatory actions minimize discrepancies
between expected and actual inputs. It thus provides a basis
for formal models of brain-body interactions (19) and a bridge
to psychosomatics.

Finally, metacognition could be incorporated into HBMs
through an additional layer that holds expectations about the
level of PEs throughout an inference hierarchy (Figure 1) (19).
This layer infers the performance of the inference-control loop
as a whole, enabling a representation (and updating) of
mastery or self-efficacy beliefs.
changing the body 
through interoactions

interosensations
 from the body

body

Figure 4. Highly schematic illustration of the inference-control loop for
interoception and exteroception. For exteroception, exterosensations (sen-
sory inputs caused by states of the external environment) originate from
receptors (e.g., mechanoreceptors, proprioceptors, photoreceptors) and are
transmitted via the classical sensory channels (vision, audition, touch, taste,
smell) to reach the brain’s primary sensory areas. From the perspective of
perception as inference, exterosensations are combined with a priori beliefs,
based on a model of the environment, resulting in a perception of the
environment that is referred to as exteroception. For interoception, inter-
osensations (sensory inputs caused by bodily states) originate from various
bodily receptors (baroreceptors, chemoreceptors, thermoreceptors, etc.).
Interosensations carry information about bodily states, such as temperature,
pain, itch, blood oxygenation, intestinal tension, heart rate, hormonal con-
centration, etc., and reach the brain via two major afferent pathways: small-
diameter, modality-specific afferent fibers in lamina 1 of the spinal cord that
project to specific thalamocortical nuclei and the vagus and glossophar-
yngeal nerves projecting to the nucleus of the solitary tract. Both pathways
converge on the posterior insula cortex. From the perspective of perception
as inference, interosensations are combined with a priori beliefs, based on a
model of the body, resulting in a perception of the body that is referred to as
interoception. Interoception and exteroception combined yield the percept
of the body within its environment that informs action selection with regard
to both internally directed (autonomic) and externally directed (motor)
actions.
INTEROCEPTION AND HOMEOSTATIC/ALLOSTATIC
CONTROL

HBMs have been used for more than 2 decades to investigate
perceptual inference on environmental states (exteroception)
(48,49,54,74,75). However, the same inference challenge
exists with regard to bodily states (interoception) (76–78).
Signals from bodily sensors (interosensations)—blood
oxygenation and osmolality, temperature, pain, heart rate, or
plasma concentrations of metabolites and hormones—reach
the brain through various afferent pathways that converge on
posterior and/or mid insula cortex (79–81), a region regarded
as interoceptive cortex (82,83). Several lines of evidence—in
particular from pain and placebo research [for reviews, see
(79,84–86)]—indicate that interosensations are not processed
“raw” but are shaped by prior beliefs (Figure 2B).

Supported by anatomical and physiological findings [for
reviews, see (77,87)], it has been proposed that perception and
control of bodily states follow the same hierarchical Bayesian
principles as for environmental states (76–78). This implies a
joint computational approach to characterizing disease
mechanisms in exteroceptive (psychiatry) and interoceptive
(psychosomatics) domains (Figure 4).

Notably, regulation of bodily states comes in two forms.
Homeostatic control (22) is a form of reactive control (23) that is
classically formalized as cybernetic feedback control (15). The
more recent concept of allostasis (“stability through change”)
(88) refers to prospective control, where actions are taken before
homeostasis is violated. Put differently, allostasis is a self-
initiated temporary change in homeostatic set-points to pre-
pare for a predicted external perturbation (89). When replacing
classical set-points with homeostatic beliefs (expectations
about bodily states), both can be cast formally as active infer-
ence (19). Homeostatic control can then be understood as
reflex-like emission of corrective actions that fulfill beliefs about
bodily states, and allostatic control can be understood as
changing homeostatic beliefs under guidance by higher beliefs
or forecasts about future perturbations of bodily states (19).

Neuroanatomically concrete circuits for interoception
and homeostatic/allostatic control have been suggested
(19,78,80,81,87). Anterior insula (AI) and anterior cingulate
cortex (ACC) play a central role in these proposals, as they are
thought to represent current and predicted states of the body
B

within the external world (80,90,91). Equipped with projections
to regions with homeostatic reflex arcs (e.g., hypothalamus,
brainstem), AI and ACC may signal the forecasts that guide
allostatic control (19,80,87). Furthermore, they likely interface
interoceptive and exteroceptive systems and mediate their
interactions, such as the influence of interoceptive signals on
exteroceptive judgments (Figure 4) (92–94).
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 5
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TAXONOMY OF FAILURE LOCI AND
COMPUTATIONAL DYSFUNCTIONS

Our general thesis is that conceptualizing adaptive behavior in
terms of inference-control loops and their concrete imple-
mentation as HBMs systematizes potential failure loci and
associated computational dysfunctions. The ensuing taxon-
omy of disease mechanisms could guide differential diagnosis,
in analogous ways for computational psychiatry and compu-
tational psychosomatics. That is, in the general inference-
control loop outlined above, maladaptive behavior could
arise from primary disruptions at five major loci (Figure 3B):
1) sensory inputs (sensations), 2) inference (perception),
3) forecasting, 4) control (action), and 5) metacognition.

Clearly, each of these processes could be conceptualized
under different computational frameworks. In the specific case
of HBMs, failures at any of these levels can arise from distur-
bances in a small set of computational quantities (Figure 3A):
1) bottom-up signals (sensory input or PEs), 2) top-down sig-
nals (expectations or predictions), and 3) their precision
(inverse uncertainty).

These two axes may lend useful overarching structure to
pathogenetic considerations and provide a conceptual grid for
classifying disease mechanisms in computational psychiatry
and computational psychosomatics. However, this requires
that the above levels and quantities can be inferred non-
invasively in individual patients, using computational assays
that can be applied to behavioral, (neuro)physiological, and
neuroimaging data (6,95). Suitable techniques for model-
based inference on pwPE signaling in cortical hierarchies
exist (96); owing to space limitations, we discuss them in the
Supplement.

Computational Psychosomatics

Psychosomatic medicine is concerned with somatic diseases
that are caused or influenced by mental processes (97), for
example, bodily symptoms caused by beliefs. Classic exam-
ples for the influence of beliefs on bodily states are placebo
and nocebo effects (Figure 2B) (84–86). In placebo and nocebo
effects, expectations about the effects of an intervention
trigger reactions that fulfill the expectation. Importantly, the
strength of placebo is known to depend not only on beliefs
about effect amplitude but also on the precision of this belief
(85). Our framework offers a formal explanation for this
empirical phenomenon because in HBM implementations of
homeostatic control, the vigor of belief-fulfilling actions
depends on the precision of the beliefs (19).

Computational treatments of psychosomatic disorders are
rare [but see (98,99)]. This may be due to the (perceived) lack of
a comprehensive framework that formalizes interoception and
homeostatic/allostatic control and makes them measurable in
individual patients. In the following section, we consider one
concrete problem of differential diagnosis and describe how
the conceptual grid described above may guide the search for
the locus of the primary (initial) abnormality.

Example: Depression and Somatic Symptoms

Many patients with depression have somatic abnormalities,
including cardiac (100), immunological (101), and metabolic
disturbances (102). One long-standing explanation of this
6 Biological Psychiatry - -, 2017; -:-–- www.sobp.org/journal
association highlights maladaptive beliefs. For example, false
high-level beliefs about volatility of the world could cause
prolonged allostatic responses, with persistent sympathetic
activation and ensuing damage to cardiovascular, immuno-
logical, and metabolic health (“allostatic load”) (89,103). In our
framework, the influence of high-level beliefs could be medi-
ated via projections from allostatic control regions (e.g., AI,
ACC) on sympathetic effector regions (e.g., hypothalamus,
amygdala, or periaqueductal gray) where they elicit autonomic
actions by altering homeostatic set-points. Notably, HBMs can
infer fluctuations in beliefs about environmental volatility from
behavioral and peripheral physiological measurements
(32,58,75,98). These belief trajectories could be integrated into
physiological models [e.g., dynamic causal models (96,104)] of
the above connection strengths and, by comparing models
with and without modulatory effects of these beliefs, identify
patients in whom bodily symptoms are possible consequences
of beliefs. One might also hypothesize that these connection
strengths correlate with peripheral indices of sympathetic
activation (105).

An opposite interpretation views depression as “reactive” to
initial somatic disease. In our framework, this can be formal-
ized as a metacognitive response to (real or perceived) chronic
dyshomeostasis. One implementation of metacognition in
HBMs is through a top-level layer that holds beliefs about the
performance of the inference-control loop. In this “allostatic
self-efficacy” (19) concept, persistently elevated PEs decrease
one’s beliefs of mastery over bodily states; this metacognitive
“diagnosis” of lack of control may lead to depression as a form
of learned helplessness. This proposal could be tested by
correlating model-based indices of interoceptive PE signaling
with questionnaire measures of self-efficacy and helplessness.

Critically, our framework emphasizes that dyshomeostasis
could be real or perceived and could exist independently from
the brain or be caused by it:

1. A real bodily source of dyshomeostasis (that evades cere-
bral attempts of regulation).

2. Sensations—altered bodily receptors (“broken sensor”)
[e.g., visceral hypersensitivity (106)].

3. Inference—illusionary dyshomeostasis, owing to impair-
ments of the afferent branch of the inference-control loop,
for example, atrophic (107) or inflammatory (108) processes
within the insula or functional pathologies of N-methyl-D-
aspartate receptors and/or neuromodulators that alter the
signaling of pwPEs [for reviews, see (62,109)]. For example,
abnormally high precision of beliefs about bodily states
could render unremarkable events, such as normal sensory
noise, meaningful; this is an interoceptive analog to “aber-
rant salience” (110) in schizophrenia.

4. Control—inadequate deployment of autonomic, endocrine,
and immunological actions; for example, owing to inflam-
matory changes in allostatic control regions [AI, ACC (108)],
regions implementing homeostatic reflex arcs [e.g., hypo-
thalamus (111)], or their projections (112) or owing to
inadequately shifted set-points as a result of false beliefs/
forecasts (see above).

Distinguishing these options is hard: the closed-loop nature
of the inference-control cycle means that any primary

http://www.sobp.org/journal/www.sobp.org/journal
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disturbance will cause compensatory changes downstream.
Inflammation-sensitive imaging (108,113) could help but covers
only a few possible causes. Instead, we propose that model-
based inference [from behavior and functional magnetic reso-
nance imaging data (96)] (Supplement) on pwPE signaling in
brainstem-hypothalamic-insular-cingulate circuitry could help
identify a primary dysfunction. For example, under experimen-
tally controlled perturbations of a (yet undisturbed) bodily state,
pwPE signals in posterior and/or mid insula to predictable and
unpredictable interosensations should differ, depending on
whether the pathology is located at inference or control levels.

Computational Psychiatry

Bayesian perspectives of inference-control impairments feature
frequently in computational concepts of depression (19,87),
autism (20,114–117), schizophrenia (12,21,60,61,118,119), and
anxiety (58,120,121). We briefly discuss one application of this
framework to distinguish disease mechanisms in autism spec-
trum disorder (ASD).

Example: ASD

Hierarchical Bayesian theories of ASD revisit long-standing
observations of perceptual anomalies in patients, including
the excessive processing of irrelevant details and concomitant
difficulties of abstraction. They suggest two competing
explanations (114–117): sensory inputs of overwhelming pre-
cision or higher-order beliefs that are too imprecise for
providing generalizable predictions. In either case, a child with
ASD would incessantly experience large PEs during perception
(see equation in Figure 3A). Typical symptoms, such as
repetitive behaviors and avoidance of complex and volatile
situations (e.g., social interactions), can then be interpreted as
coping mechanisms to reduce PEs [see (20) for discussion].

Additionally, individuals with ASD show various interocep-
tive disturbances (122,123) that may equally result from an
increase in sensory precision from the viscera or a failure to
attenuate it (7). Viscerosensory precision weighting has been
linked to oxytocin; associated disturbances during develop-
ment might compromise the construction of generative models
that attribute self versus other agency to interoceptive expe-
riences (7,124).

The competing explanations of high sensory versus low
belief precision (116) could be disambiguated by psycho-
physical experiments in combination with Bayesian models of
perception. These have previously been used to assess indi-
vidual sensory processing (50,125,126) in healthy volunteers,
as have been electroencephalography-based circuit models of
precision weighting in auditory cortex (127). These models
could be used in ASD to detect (sub)groups with exaggerated
precision estimates of sensory inputs and insufficiently precise
predictions, respectively (20).
CHALLENGES AND OPPORTUNITIES

Assessing the computational anatomy of circuit dysfunctions
follows principles of homeostatic thinking, as is commonplace
in medicine, and holds great diagnostic potential. However,
clinical translation faces nontrivial challenges, particularly in
application to psychosomatics.
B

Chicken and Egg Problems

The inference-control loop represents the conceptual heart of
theories of homeostasis, allostasis, and cybernetics (Figure 1).
Its closed-loop nature means that a dysfunction in one domain
typically invokes a cascade of changes throughout the circuit,
making it difficult to differentiate cause from consequence.
However, different primary disturbances induce distinct pat-
terns of change that might be discriminable statistically—as
commonly done in fields familiar with compensatory changes
throughout dyshomeostatic systems, such as internal medi-
cine (compare differential diagnosis of hypothalamic, pituitary,
and glandular disturbances in endocrinology). Computational
psychiatry and psychosomatics could finesse this by statistical
comparison of models embodying alternative disease pro-
cesses (95). Additionally, in medicine, challenge (perturbation)
approaches are often crucial for diagnosis. Combining
designed perturbations with model selection and prospective
assessments of disease trajectories (10,96) represents a
promising approach to resolve ambiguity created by circular
causality.

One central challenge for computational psychosomatics
concerns availability of somatic perturbation techniques. In
contrast to computational psychiatry, where we can adopt
methods for manipulating beliefs and precisions from psy-
chology and psychophysics, manipulating the somatocerebral
branch of psychosomatics has access to only a few tech-
niques. These include cardiac challenges with short-acting
sympathomimetics (128), manipulating inspiratory breathing
load or air composition (129,130), transcutaneous vagus nerve
stimulation (131), baroreceptor stimulation (132), acute induc-
tion of inflammation by vaccination (133), or C-fiber stimulation
under capsaicin (134). Developing further challenges that are
noninvasive and provide temporal control should become a
priority topic for computational psychosomatics.

Universality versus Specificity

The HBM framework suggests pwPEs as a central computa-
tional quantity for inference, forecasting, action, and meta-
cognition. This generalizing view has pros and cons. On one
hand, it suggests a conceptual grid for differential diagnosis
and implies that computational differentiation of pwPE abnor-
malities could find broad diagnostic application. On the other
hand, one may be concerned that we portray cortex as a
“nonspecific hierarchical Bayesian machine” (as put by one of
our reviewers) without neuroanatomical specificity. We do not
wish to convey this impression. The inference problems the
brain faces vary, for example, depending on the sensory
channels involved and the depth of hierarchical coupling
among environmental states. Different tasks require different
types of (cortically represented) generative models and thus
distinct circuits; compare proposed circuits for interoception/
allostasis (19,87) and vision/oculomotor control (42,72).
Empirically, in tasks using the same sensory modality but
requiring inference on concrete versus abstract social quanti-
ties, pwPEs were reflected by activity in partially overlapping
and partially distinct circuits (75,135).

Furthermore, we do not claim that the framework presented
covers all existing psychiatric and psychosomatic phenomena.
Not all symptoms relate to perception, forecasting, action, or
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 7
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metacognition as the core components of our framework.
However, where this relation exists, our framework may pro-
vide useful guidance in establishing analogous schemes for
differential diagnostics in computational psychiatry and
computational psychosomatics. Combined with models that
can infer pwPE signaling in cortical hierarchies from neuro-
imaging or electrophysiological data (Supplement), this could
allow for noninvasive readouts of circuit function that may
support differentiation of potential failure loci. The promise and
limitations of this approach require prospective patient studies
that evaluate its predictive validity.
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